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Abstract We analyse the extensive loading of the neural network model proposed to describe 
neurophysiological experiments in which correlated amacton associated to uncorrelated patterns 
are found. The phase diagram is obtained and discussed. Some generalizations of the original 
model are also considered. In all the cases we demonstrate the existence of 3 region in the 
phase diagram with correlated am’actors. Results from numerical simulations which confirm the 
mean-field theory results are also presented. ~. 

1. Introduction 

Griniasty etal [I] have recently proposed an attractor neural network model which describes 
the findings of the experiments done by Miyashita and Chang [2], conversion of temporal 
correlations between stimuli to spatial correlations between attractors. In these experiments 
a monkey was trained to recognue and match a set of visual, pictures. On the one 
hand, a selective increase in neural activity which lasted as long as 16 seconds after the 
removal of the picture was found. This fact was interpreted in [I] as a manifestation of 
attractor dynamics. On the other hand, these persistent activities present a striking feature 
which cannot be described in the framework of the standard Hopfield model of associative 
memory 131: attractors corresponding to different stimuli are spatially correlated. More 
specifically, correlations between attractors associated to temporally close stimuli in the 
training session were observed. These correlations do not reflect the geometrical properties 
of the stimuli but are a consequence of learning. 

In [l] a simple modification of the Hopfield model was proposed which can capture these 
basic experimental features. For the two-state neuron network described by the variables 
si@) = i l ,  the following synaptic mahix was proposed: 

which is supplemented by the usual schematized spike emission dynamics (see e.g. 141) 

Here, the p uncorrelated patterns are N-vectors with components given by cr = kl with 
probabilities P(6: = f l )  = i. The index /L labels the stored patterns and signals the order 
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in the sequence that corresponds to the temporal order of presentation in the training phase. 
The parameter a reflects the stren,& of association between consecutive patterns. 

As was shown in [ V I ,  in the low loading level ( p / N  -+ 0 as N --f CO) and for 
< a < 1, the matrix (1.1) produces a set of correlated attractors. The mutual correlations 

are a decreasing function of the distance among the corresponding stimuli in the sequence 
of presentation. 

The analysis of the papers [1,51 has two obvious limitations: only the network of 
binary neurons was considered, as well as the limit of finite loading. The behaviour of 
a biologically more realistic network consisting of analog elements, representing neuronal 
spiking rates, is the topic of a parallel study [6]. In this paper we extend the analysis of  the 
model to the case of extensive loading, where the number of stored patterns is proportional 
to the number of neurons. Our aim is to demonstrate that the correlated attractors found in 
the finite loading regime are not destroyed by the extensive loading, which is not obvious a 
priori, and furthermore that the overlaps and correlations are not drastically modified. The 
phase diagram of the network in the variables a and CY p / N  and, in particular, the critical 
storage capacity for the specially interesting regime with correlated attractors are found. 
Some generalizations of the matrix (1.1) for different structures of association among the 
patterns are also discussed. 

The paper is organized as follows. In section 2 the analysis of the finite loading is 
recapitulated. In section 3 the mean-field theory analysis and the phase diagram for the 
extensive loading of the various proposed models are discussed. In section 4 numerical 
simulation results are presented. Finally, a section with conclusions is included. 

L F Cugliandolo and M V Tsodyks 

2. Finite loading 

2.1. Mean-field equations 

We consider here a generalization of the dynamics given by (1.2) to incorporate the stochastic 
nature of neural activity. This is done by inserting the network in a thermal bath of 
temperature T = I/@. The new dynamics is given by (see e.g. [4]) 

+1 I -1 
with probability [1+ exp (-2gh&))]-' 
with probability [1~+ exp (2gh;(t))]-' . (2.1) 

The natural variables describing the similarity between the state of the network and the 
stored patterns are the overlaps mp(t) defined as 

S i ( t  + st)  = 

(2.2) 

where (. . .) denotes the thermal average. The mean-field equations in the finite loading 
regime in the limit of large N (i.e. p / N  -+ 0) at finite temperature are 

(2.3) 

((. . . ) ) t  represents the mean over the probability distribution of t? variables. The dynamics 
of the network, when stimulated by a pure pattem, is described by the iteration of these 
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equations starting from a state identical to the stimulating pattern. This initial state 
corresponds to an overlap vector mE(r = 0) = (mI): = 8;. The RHS of equation a, 
evaluated in this configuration reads 

+ I  tanhp 1 1 - tanhZ 2pa 
1 - tad? p tanh' 2pa 

while the RHS of equations a + 1 and a - 1 read 

(2.4) 

In order to have a pure retrieval state, i.e. a configuration such that mp = m 8;. as a fixed 
point, RHS=+' and RHS~-' should be equal to zero while the iteration of the a equation 
should reach a fixed point. As can be seen from (2.5), the pure retrieval state does not exist 
if both a and T are non-zero. When a = 0 the Hopfield network is recovered. 

2.2. Zero temperature 

The zero temperature limit of system (2.3) has been studied in [1,5]. Auto-associative 
retrieval states exist as fixed points if the parameter a belongs to the interval [O, 5 ) .  i.e. the 
uncorrelated patterns are exact attractors. If a E (4, l) ,  the system evolves to an atiractor 
which has an overlap different from zero with exactly nine patterns, independently of the 
number of stored patterns. The overlap with the pattern used as stimulus is the 'highest' 
and the overlaps with the neighbouring patterns in the stored sequence decay symmetrically 
until vanishing at a distance of 5. The whole set of attractors can be obtained by cyclic 
rotations of 

1 
mp = - 27(0 , _ _ _ ,  0,1,3,13,51,77,51,13,3,1,0 ,..., 0) .  (2.6) 

These attractors are mutually correlated. Correlation between attractors is defined as 

where U? is the fixed point of the spike emission (1.2) U: =si, i.e. the activity of neuron i 
when the network is in attractor a. 7 is the average activity in attractor a which is zero in 
this limit. Thus, replacing (1.2) in (2.7) and using the definition of the overlaps mlL (2.2), 
at zero temperature the correlations read 

Due to the structure of the attractors, (2.6), their correlation C(a, p )  only depends on the 
separation of the corresponding stimulating patterns in the memorized sequence, d = 101 -p  1. 
For E > p, C(a, p)  = C(a - p )  = C, and, furthermore, cd = c,-d, because of the cyclic 
property. The computation of the correlations is straightforward and up to a distance d = 5, 
they are 

CO ='1 C, = 0.66 C2 = 0.33 C, = 0.12 Cd = 0.04 C5 = 0.01 (2.8) 

while more distant attractors are not significantly correlated. If p 3 22, attractors separated 
at distances 10 < d < p - 10 are not correlated at all, Cd = 0. 
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Figure 1. Phase diagram for a network loaded with p = 13 palterns in a thermal bath. I Matis- 
like states; U Paramagnetic phase; I11 Symmetric states: IV Correlated atnctors. 

2.3. Finite temperature 

If the temperature T is different from zero, the fixed points of the mean-field equations can 
be found by iterating the system (2.3). It is then easily found that the qualitative behaviour 
of the network when in a thermal bath does not change. The phase diagram (a, T )  is plotted 
in figure 1. 

If a < 0.5 and the temperature is small (sector I), the network behaves as a Hopfield 
network in a thermal bath. Although, if a is not strictly zero, attractors with just one non- 
zero overlap do not exist, for small temperatures the fixed points have only one overlap 
close to one and all others negligible. These solutions are modified by temperature. Wlien 
it is increased, the main overlap decreases while others increase. The critical curve 2'' (a) 
determines the transition temperature at which these attractors disappear. 

If a = 0 and the temperature is T 5 T'(0) = 1 the system evolves to a state completely 
nncorrelated with all attractors, mw = 0, Vp. These are the fixed points in sector II, i.e. the 
paramagnetic phase. 

For small non-zero a and T > T'(a) (sector Et) the system evolves to an approximately 
symmetric state. These states become more symmetric increasing the temperature until T 
reaches T2(a)  and the transition to the paramagnetic phase takes place. 

For a > a, correlated amactors appear. The critical a at non-zero temperature is 
smaller than 0.5 and it depends on p (& = 0.27 for p = 13). Correlated attractors exist in 
sector IV. The typical values of the overlaps are similar to those given by (2.6). Although for 
general T they are all non-zero, they rapidly decay with the distance from the initial pattern 
(in particular, for a E (i, 1) the transition temperature is just 0 and at this temperature the 
overlaps (2.6) are exact). 

At a further increment of the temperature the system evolves to a symmetric state (sector 
JW. 
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3. Extensive loading 

In this section we extend the analysis of the model to the case of extensively many stored 
patterns. To this end, we obtain the mean-field equations for a general set of 'quadratic' 
models which include, as special cases, the original model and some generalizations. We 
then present the models and analyse their phase diagrams. 

3.1. Mean-field equations 

Following [7], we start by computing the averaged free-energy per spin' 

N 

0 N-m N (3.1) 

where ( ( . . . ) ) e  is the quenched average over $ variables. 

matrix 
The whole set of interesting models can be described with a general 'quadratic' synaptic 

(3.2) 

The indices g, = 1,. . . , p .  label patterns and X is a p x p matrix. To simplify notation, 
it is useful to write the matrix X and its inverse B X-' as 

where xl(bl), xZ(b2). xs(b3) and x@4) ares xs; s x ( p - s ) ,  ( p - s )  xs and ( p - s )  x ( p - s )  
matrices, respectively. Each synaptic matrix of the form (3.2) constitutes a particular way 
of associating patterns; thus, different matrices X give rise to different models. 

The following derivation of the mean-field equations relies on the assumption that 
patterns can be separated into condensed ('low'), i.e. with the overlaps remaining finite 
in the N + CO limit, and non-condensed ('high'), i.e. with the overlaps of magnitude 
O( l / f l ) .  The correctness of this assumption depends on the form of the mahix X. It is 
justified if the matrix does not couple all the patterns; for instance, if it is a block-matrix. 
If it is a more general matrix the derivation should be justified aposteriori. 

The averaged free-energy (3.1) can be calculated using the replica method [7]. Some 
details of this computation are presented in appendix A. Assuming replica symmetry, the 
final expression for the averaged free-energy per spin, still in terms of a general matrix X, 
is 
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The mean ((. . .))z,c represents a combined average over discrete 5" and Gaussian z variables. 
CY denotes the memory loading fraction, 01 = p j N .  The operator O[q] acts on low-pattern 
space,& and its matrix representation is 

L F Cugliandolo and M V Tsodyks 

P 
~ [ ~ I V A  b l v i  - C b z v y ( b 4  - B ( 1  - ci)l)-',sbssi 

Y S  

(v. h = 1, . . . , s). A sum over the eigenvalues A, of the high-pattern block of the matrix 
X has been translated into an integral assuming that they depend on y j p ,  Ay = A ( y / p ) .  
The variables iii, are related to the overlaps m, = -Sf/Sh" through 

my = ~ [ q l ~ h  E?. 
A 

The general mean-field equations at finite temperature T in terms of the actual overlaps 
mA are 

b ' t a * g ( ~ ~ + ~ m ~ o [ q 1 - 1 ~ ~ 5 ~ ) ~  AX 2.B (3.5) 

(3.6) 

(3.7) 

with 

These equations reduce to the known mean-field equations of .[1,5,7]. In the Hopfield 
model, X = I ,  Ay = 1 Vy,  and O[q]  = O[q]-' = ~ I ;  thus, the mean-field equations of 
[7] are immediately recovered. The finite p situation of section 2 can also be obtained. 
The matrix X has in this case a finite sector different from zero with components given 
by Y('),A = &A + a(S,A+I + Suh--l +6,1& + S,&l). O[q]-lvA reduces to Y ( r ) v ~ .  In the 
CY + 0 l i t  the first mean-field equation decouples and reduces to (2.3). 

3.2. The models 

The models to be discussed are define4 by particular matrices X, (cf (3.3)). Calling 
t x t matrix with components given by 

a 

Y('),, =~,,+a(a,~+1+~,,-1 +s,J ,~  + S , ~ S , , )  

the cases under study are represented by 

(I) X I  = Y ( S )  x* = o  X )  = o  x4 = I  
(n) x =  Y @ ) .  
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The separation of patterns in condensed and non-condensed is justified in the first case 
since 'low' and 'high' learnt patterns are disconnected inside the synaptic matrix, X being a 
block-matrix. In the second case this assumption is not justified a priori although it can be 
justified a posteriori.. In fact, although stored patterns form an infinite cycle of dimension 
p = U N ,  results from the finite p model suggest that this approximation may be valid to 
describe attractors in a certain range of values of the parameter a. In the finite loading 
regime, if 0.5 < a < 1, the network stimulated by each of the stored patterns evolves to 
an attractor correlated with a small number of patterns concentrated around the stimulating 
pattern (see section 2). More precisely, at zero temperature the overlaps vanish exactly at a 
distance of 5 (cf (2.6)). If, even in the extensive loading regime, the structure of attractors 
is similar and the decay of the overlaps is fast enough, i.e. mE - I / d ,  the assumption 
will be justified a posteriori. Indeed, the results from the mean-field calculation do not 
contradict this assumption and they are also in good accord with numerical simulations (see 
section 4). 

Network I. The first model, which will be called network I, corresponds to leaning a 
finite cycle of patterns in the presence of an infinite number of patterns already learnt in 
Hopfield's style, which act as a noise. The eigenvalues of the high block are A, = lVy, 
and O[y]-' = Y@). Thus, the mean-field equations (3.5H3.7) reduce to 

1 r = -  
(1 - c y  

(3.9) 

(3.10) 

(3.11) 

where c = p(1 - y). 

Network II. 
matrix Y'(p-s)y, = 8,s + a(S,s+l + 8 , ~ ) ,  which read 

In the second model, called network 11, the eigenvalues Ay are those of the 

with f = p - s. The integral Z (3.8) can be explicitly computed 

(I  - (1 - c,J1T-;s, + log(1 - c )  1 z=Cu -- [c;z 
(3.12) 

with 

2ac 
1 - c  

y zs -_ 
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The inverse of matrix O[ql has the following form (see appendiw B) 

o[qI- 'vA = y'")vA + f v  s A l  +f, &As. 

The contribution of the last two terms to the mean-field equations (3.5H3.7) is neglected 
since the interesting solutions have rapidly decreasing overlaps, such that m' and ms behave 
as 114% when N + CO. The systemto be solved reduces to 

(3.13) 

(3.14) 

(3.15) 

where s should be taken big enough to ensure ms - I / a .  

Other examples could be considered, such as two disconnected cycles, one of dimension 
s and the other one of dimension p - s, an s-cycle of patterns learnt in the presence of a 
finite number of infinite cycles, a s-cycle of pattems learnt in the presence of an infinite 
number of finite cycles, etc. These models do not present a different qualitative behaviour 
from the ones already described. Indeed, their mean-field equations for the overlaps and 
q coincide with the ones presented for networks I and II. The mean-field equation related 
to the noise created by the background pattems, which depends on the high-pattern block 
eigenvalues A,, differs from model to~model. We will not analyse these examples here but 
just comment that they have a similar phase diagram. 

3.3. Zero temperature 

Neiwork I .  In the zero temperature limit, the mean-field equations of network I read 

(3.16) 

(3.17) 

('3.18) 
- I 
i-=- 

(1-c)Z' 

The dynamics of the network stimulated by a pure pattern is described by the iteration of 
these equations starting from the initial configuration my = 8;. Proceeding in this way, the 
phase diagram (a. a) can be studied. Figure 2 represents it for a network with s = 13 (the 
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dependence on the dimension s of the low block is discussed below). Note the similarity 
with the phase diagram (a, T) for the network with finite loading. 

In zone I the system behaves as a Hopfield netwcrk. Starting the network from a pure 
pattern state it evolves to a state having overlap close to one with the selected initial pattern 
and small, though different from zero, overlaps with the other low patterns. Such attractors 
exist only for a < f and below the critical line cr = cr'(a). This line does not depend on 
the number of condensed patterns s. 

For every fixed a inside the interval [0, f) the attractor correlation with the stimulating 
pattern goes to one when 01 approaches zero while it slightly decreases when it gets closer 
to the critical line d(a ) .  Conversely, the overlaps with the neighbouring pattems go 
to zero when 01 goes, to zero and increase when cr approaches the critical capacity line. 
Nevertheless, the value of the main overlap is close to one while the other components 
are close to zero in the whole of sector I. The attractors belonging to different stimuli are 
essentially uncorrelated. 

For cr above the critical line a'(a) and a c U I ,  i.e. zone II, the network stimulated by a 
pure pattem evolves to a spin glass state corresponding to a null overlap vector. Evidently, 
when a = 0 the critical capacity is that found in [7] for a Hopfield network, ~'(0) = 0.138. 
The spin glass solutions satisfy 

Since these equations are independent of the parameter a the spin glass phase behaves as 
in the Hopfield model. 
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If the parameter a1 < a < az and a > a'(a), the system evolves to a symmetric state. 
Indeed, a symmetric ansatz mu = m, v = 1,. . . , s simplifies the system (3.16)-(3.18) and 
allows it to be written as a single equation 

(3.19) 

where qs = c" and U = m(l + 2a)/@. The factor 1 + 2a implies a dependence on 
the parameter a. For each s (3.19) defines a critical curve a'@) above which solutions with 
U # 0 do not exist. It marks a transition between the symmetric (sector III) and the spin 
glass (sector II) regions. If a = 0 (3.19) reduces to the equation for symmetric solutions 
of the Hopfield model presented in [7]. Hence, the a2(a) curve actually starts at a = 0 
and az(0) is different from zero (it depends on s, for instance i f s  = 3, d ( 0 )  N 0.03) and 
increases with a. This means that s y k e e i c  solutions exist even for a < a1 though in that 
region they are not reached by the dynamics of the system, starting from the pure pattern. 
As for the dependence on the size of the low block, both the $(a) curve and a1 depend 
on s. The curve d ( a )  is a decreasing function of s and in the big s limit it goes to zero 
everywhere. Thus, a1 increases with s. 

When the parameter a is bigger than az, a new sector appears in the phase diagram. 
After reaching the curve a1 (a) the network evolves to a state having non-zero and significant 
overlap with various patterns. The values of the overlaps decay with the distance in the 
stored sequence from the one used as stimulus. The typical values for the overlap vector 
corresponding to attractors in zone N are 

(3.20) mu N ( 0 , .  . . , O ,  0.01,O.l. 0.4,0.6,0.4,0.1,0.01,0,. . . , O ) .  
These attractors are similar to those found for the finite loading regime and the finite 
temperature case (see figure 1). Just as in the finite p limit these attractors are correlated. 

For a > a2 a further increase in a implies a new transition, now between zones N and 
III. This defines a new critical line called d ( a )  (see Figure 2). 

Network [I. As for network II at zero temperature, it is described by the following set of 
mean-field equations: 

(3.21) 

(3.22) 

(3.23) 

where y = 2ac/(l - c) .  
According to the discussion in the beginning of the section, this system should be 

understood as an infinite set of equations for condensed patterns. The only legitimate 
solutions are those with the overlaps my peaked around one pattern v and whose values fall 
off rapidly enough. 

This network has a phase diagram similar to that of network I. As we showed earlier, 
the critical line &a), separating syriunehic and spin glass states, moves down to zero as 
s >> 1, thus there are no symmetric attractors for this network. Thus the curve a3(a) here 
marks a transition between correlated and spin glass phases. It can be estimated by iterating 
(3.21)-(3.22). For example, for network II a3(a = 0.6) = 0.0016, while for network I, 
when s = 13, a3(u = 0.6) = 0.0083. 
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4. Numerical simulations 

The results obtained from the mean-field theory calculation can be checked by performing 
numerical simulations. On the one hand, the finite loading regime ( p / N  + 0 when 
N + 00) is represented by loading the network with a small number of random patterns, 
such that p / N  << 1. On the other hand, the extensive loading regime is represented by 
loading the network with p = a N  random patterns. The initial configuration of the network. 
is taken to be one of the memorized pattems. Its state is then updated using asynchronous 
dynamics. In this scheme units are checked in a prescribed order and whenever one of 
them flips all the local fields are recomputed and changed accordingly. Finally, when the 
network stabilizes the overlap between the attractor state and each of the leamt patterns is 
computed from (2.2). Repeating this procedure with all the leamt patterns used as stimuli 
the correlations between attractors are calculated at the end using (2.7). 

4.1. Finite loading 

The finite p situation at zero temperature has been simulated by loading networks of 
N = 5000, 10000, 20000 and 30000 neurons with p = 15 patterns. Two values of 
the parameter a have been selected: a = 0.45 and a = 0.6, below and above the critical 
value a, = 0.5, respectively. For each network the evolution of Ni = 300 stimulating 
patterns has been studied. 

When the number of neurons is increased and the number of patterns is kept fixed in 
such a way that the relation p / N  decreases approaching the l i t  p / N  << 1, the results 
from simulations are expected to reproduce the mean-field theory results of section 2 more 
accurately. In the case a = 0.45, a < a, = 0.5, ~ihe network should behave as a 
Hopfield network; the stimulating pattern should evolve to an attractor highly correlated 
with it, namely a Mattis-type attractor. Results from simulations show that the network 
with N = 5000 neurons behaves in a quite different way. deviations from the theoretical 
predictions due to the relatively small number of neurons considered ( p / N  = 0.003). The 
networks with N = 10000 and N = 20000 units present an intermediate behaviour. Finally, 
in the network with N = 30000 neurons, all initial configurations evolve to Mattis-type 
attractors, and the network behaves as a Hopfield one, in accord with the mean-field theory 
prediction. 

In the case a = 0.6, a z Q~ = 0.5, the initial configurations are expected to evolve 
to attractors mainly correlated with the stimulating pattem but also with its neighbours in 
the leamt sequencei namely correlated attractors. As for a = 0.45, the network presents a 
quite different behaviour when it has N = 5000 neurons, it improves its behaviour when 
the number of units is N = 10000 and for N = 20000 it already behaves in agreement 
with the theoretical predictions. Furthermore, the values of the overlaps and correlations 
between attractors for the network with N = 20000 are also in good accord with those 
presented in (2.6) and (2.8). The averaged overlaps and correlations are 

in” N (.. .,0.02,0.10,0.40,0.60,0.40,0.10,0.02, ... ) (4.1) 

CO N 1 CI E 0.67 C2 E 0.33 C3 N 0.13 C4 N 0.05 Cs N 0.02. (4.2) 

Figure 3 shows the number of stimulating patterns that evolve to a Mattis-type (Mattis), 
correlated (Corr) or a different (D@ configuration depending on the number of neurons of 
the network, both for a = 0.45 and a = 0.6. Note that the size of the network which must 
be chosen to reproduce accurately the results of mean-field analysis corresponds roughly to 
the critical capacity of the model, as should be expected (see also the next section). 
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Figure 3. The number of various types of attTaCtors, obtained in the numerical simulations of 
the networks with fixed number of panem ( p  = 15) and varying number of neurons; a = 0.45 
and a = 0.6, respectively. 

4.2. Extensive loading 

In this section we shall concentrate on the outcomes from simulations of network ll. We 
chose to simulate this model since an a priori unjustified assumption has been made in 
section 3 to derive its mean-field equations which needs special confirmation from numerical 
results. 

Simulations have been carried out on networks with 20000 and 40000 neurons. The 
networks have been loaded with p = U N ,  ci fixed, random patterns. Again, two different 
values of the parameter a have been selected, a = 0.45 and a = 0.6. For a = 0.6, the 
mean-fieid theory analysis predicts that no Mattis-type attractors exist and that the critical 
storage capacity at which correlated attractors disappear is ci3 = 0.0016. In figure 4 we 
plot the fraction of runs leading to attractors different from correlated ones, for capacities 
a! = 0.0014,0.0016 and 0.0018 around the critical or3. 

The points in each graph correspond to a different choice of p and N such that a! is 
fixed. It can be seen that as the number of neurons and patterns is increased proportionally, 
the probability of obtaining the correlated type of attractors increases (decreases) if a! < or3 
(or > a3). We believe that the remaining deviations from the theory are due to finite size 
effects. 
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The averaged overlaps and correlations obtained from simulations in this regime have 
similar values to those given by (4.1), (42). 

5. Conclusions 

In conclusion, it is important to stress the qualitative difference between the present model, 
introduceil in [I], and the previous work on The Hopfield model with correlated attractors 
(see e.g. [S-111). In all these previous works the patterns psesented to the network have 
fixed correlations, which are inherited by the attractors due to the learning algorithm. In the 
present approach, the patterns are uncorrelated, and the correlations between attractors are 
due to the associations of different patterns at the learning stage. It opens the possibility of 
investigating the influence of various learning protocols on the correlation smcnues of the 
learned attractors. 

In this work we have studied the extensive loading of the neural network with correlated 
attractors associated to uncorrelated patterns introduced in 111. We have shown that the 
peculiar correlated attractors of the finite loading [1,5] are not.destroyed by the loading of 
an extensive number of patterns. The phase diagram of this network, as well as the ones 
corresponding to Telated ways of associating patterns in the learning session, have a region 
with correlated attractors. The values of the overlaps and correlations are not dramatically 
modified by the extensive loading. Finally, numerical simulations described in section 4 
confirm the mean-field theory results both for the overlaps and d e  correlations and for the 
critical capacity lines of the phase diagrams. 
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Appendix A 

In order to compute the free energy per spin f, (3. I), with the replica method [7] one starts by 
calculating the mean of the replicated partition function Z'" = Tr,Teexp[-p rp Jjjs,'sf] 
(Greek indices p ,  U = 1, . . . , n label replicas). The (-variable dependence is then lineanzed 
through the Hubbard4tratonovich (HS) identity and the variables ETwp, p = 1,. . . , p are 
introduced. 

Assuming that X is such that s patterns U = 1, . . . , s 'condense', i.e. have a finite overlap 
when N goes to infinity, the pattern space P can be written as a direct sum P = L eB 7-1 
with L the condensed or low- pattern space and 7-1 the non-condensed or high-pattern space 
(y ,  6 = s + 11, . . . . p label high patterns). X represents an operator acting on P. 

The average over non-condensed patterns can then be explicitly computed. Moreover, 
changing variables Sp + SP/m and expanding around big N ,  the integrals over Sp 
are quadratic and can be performed. Thus 

L F Cugliandolo and M V Tsodyks 

((Z'"))p = (det X)-"'z(&%)"s(ap 
r 

(A. 1 ) 
The measnre corresponds to DUPE n: n;(diE"./G). Fpc (p  # U) is a symmetric 
Lagrange multiplier which enforces the relation q,,. = C r s f s y .  Q is then a symmetric 
operator acting on replica space (qpm. p # U, with 0 elements in the diagonal). D~pojf = 

L[Q] and z[Q] are operators acting on the spaces S = L 8 R and 5'' = 7-1 8 R, 
defined as direct products between low-pattem and replica space (R) and between high- 
pattern and replica space, respectively. The operators r [Q]u~,po  and F[Q]y6,p0 have the 
following matrix representations: 

n;? f i P C  and 'DIPC.14 = n"," d q w .  

- 
K[Q]YS.PO (b4 - p & b  - 6 ' 6 ~ 6 q p ~  

The external fields h', v = 1, . . . , s have been introduced to signal the s pattems expected 
to condense. 

In the n -+ 0 limit the multiplying constant factor in (A.l) reduces to one. Thus, the 
averaged freeenergy per spin (3.1) reads 

1 
lim lim -Trlogz[Q] 1 

,9 N-mn+O 2nN 
_ -  
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Assuming replica symmetry, this expression can be simplified and the l i t s  n --f 0 
taken. In order to do so, it will be useful to adopt a compact notation to describe the operators 
acting on product spaces, more precisely, as direct products denoted by 8 between operators 
- acting on pattem space (ks t  factors) and operators acting on replica space (second factors). 
K[Q] can then be written as 

- 
KIQl E (b4 - P I )  8 I - B I  8 Q 

and assuming replica symmetry 
- 
K [ Q l =  (b4 - B O  8 I - 841 €3 (1 - I )  

where operator 1 has a matrix representation given by l,, = 1, p ,  D = 1.. . . , n. The 
inverse T[Q]-' can be written in +e form 

- 
K[Q]-' = C@ I + D 8  (1 - I )  

with C and D acting on 7-1 and satisfying C - D = (b4 - p(1 - ¶)I)-', independently of 
n. The operator z[QI is described by 

- 
L[Q] = b l 8  I - b&Q]-'b3. 

Finally, EYo is a vector in S and can be represented by E 8  1. 
In the replica symmetry approach the third term in (A.3) reads 

1 
W O  n 3rd Term = iim -(Et3 l)~[QlC%@ 1) 

1 
M O  n =iEb1iE-lim-(E8 I ) b z [ C @ Z + D D ( l  - I ) l b 3 ( E 8 1 )  

= m[bl - bz(b4 - B(1 - q)Z)-'bs]iii - 

As regards to the fourth term in (A.3) 

I 
4thTerm- lim lim- Tr log E[q] 

N + W ~ - Q  2nNg 

it can be computed as follows 

detF[q] = det[(b4 - j?I) @I Z - &I 8 (1 - I)] = det[(A-'I - @ I )  8 I - ,341 8 ( I  - I)] 

where A-' is a vector in 'E with components given by X-'-eigenvalues. It is easy to see 
that the operator in the RHS has p - s eigenvalues A;' - p - &(n - I) and ( p  - s)(n - 1) 
eigenvalues A;' - @ + pq. Thus, 

-" + IogIA;' - ,6 + Bql 
1 1 ,  l P  

lim lim -Trlogl?[q] = - hm -E 
N+mn+O ZnNp 2pN-+mN 

If A, depends on y / p ,  this sum can be transformed into the integral Z (cf (3.8)) since 
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Appendix B 

Using the relations between bl,  . . . , b4 and X I ,  . . . , x4 coming from B X  = I ,  the operator 
O[c]-' can be written as 

L. F Cugliandolo and M V Tsodyks 

,O[c]-' = x l [ a  - x;'xZx;'X3)-' x;'xZb4(1 - CbT1)-'X3]-' 
with 64 = (x4 -x~x;'x~)-'. The form of @cl-' can be understood knowing the form of 
the mahix A-l, 

A -  (r-~;1x2q1xz)-1 + x ; ' x 2 b 4 ( f - ~ b ; ' ) - ' ~ ~  =A;' +A*.  

Since x2 and x3 are~matrices with only two components different from zero , the product 
xzZx3, for any p - s x p - s matrix: 2, is ab s x s matrix with four components different 
from zero, namely components ll,ls,sl and. ss. Thus, Az has only two columns different 
from ze , columns 1 and s and A1 is a diagonal matrix with columns 1 and s modified by 
the second term. Finally, since AI-'' has the same formas AI,  the same happens to A and 
it is easy to see that O[c]-' is 

o[c]-'vA = y ' @ ) v A  + f v s A l  + T v & s .  
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